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Abstract

Ultra-thin elastic films of nano-scale thickness with an arbitrary geometry and edge boundary conditions are ana-

lyzed. An analytical model is proposed to study the size-dependent mechanical response of the film based on continuum

surface elasticity. By using the transfer-matrix method along with an asymptotic expansion technique of small

parameter, closed-form solutions for the mechanical field in the film is presented in terms of the displacements on the

mid-plane. The asymptotic expansion terminates after a few terms and exact solutions are obtained. The mid-plane

displacements are governed by three two-dimensional equations, and the associated edge boundary conditions can

be prescribed on average. Solving the two-dimensional boundary value problem yields the three-dimensional response

of the film. The solution is exact throughout the interior of the film with the exception of a thin boundary layer having

an order of thickness as the film in accordance with the Saint-Venant�s principle.
� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The surface of a solid is a region with small thickness which has its own atom arrangement and property

differing from the bulk. For a solid with a large size, the surface effects can be ignored because the volume

ratio of the surface region to the bulk is very small. However, for small solids with large surface-to-bulk

ratio the significance of surfaces is likely to be important. This is extremely true for nano-scale materials or

structures. Recently, mechanical experiments of nano-scale bars (Wong et al., 1997) and plates (Rose et al.,

2000) indicate that the effective elastic properties of these minute structural elements strongly depend on

their size. The understanding and modeling of such a size-dependent phenomenon has become an active
subject of much research (Sheehan and Lieber, 1996; Yakobson and Smalley, 1997; Terrones et al., 1999).
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Classical elasticity lacks an intrinsic length scale, and thus cannot be used to model the size effect.

Atomistic simulation (Sun and Zhang, 2003), though very powerful in pursuing the details at microscopic

level, seems too complex for practical applications as it needs tremendous computation. An efficient ap-

proach has been developed by Miller and Shenoy (2000) upon the continuum concept of surface stress.
They examined unidirectional tension and pure bending of nano-scale bars and plates, and found more

remarkable size effect in bending than in tension. The results are in excellent agreement with their atomistic

simulation by embedded atom method for face-centered cubic aluminum and the Stillinger–Weber model

for silicon. The present paper will seek to extend this continuum approach, and it is devoted to analyzing

the static response of ultra-thin elastic films.

From the continuum point of view, a surface is regarded as a negligibly thin object adhering to the

underlying material without slipping, and the material constants for both are different. A generic and

mathematical exposition on surface elasticity has been presented by Gurtin and his coworkers (Gurtin and
Murdoch, 1975; Gurtin et al., 1998). In their work, surface stress depends on deformation. The equilibrium

and constitutive equations of the bulk solid are the same as those in the classical elasticity, but the

boundary conditions must ensure the force balance of the surface object. This model has been applied by

several authors. Besides Miller and Shenoy�s work mentioned above, Shenoy (2002) analyzed size-depen-

dent torsion of nanobars with prismatic section; Sharma and Ganti (2002) and Sharma et al. (2004) pro-

vided analytical expressions for the size-dependent strain states caused by spherical quantum dots and

pores, respectively. Nevertheless, the presence of surface stress gives rise to a non-classical boundary

condition which in combination with the constitutive relation of surface and the equations of classical
elasticity forms a coupled system of field equations. This makes the solution of the corresponding boundary

value problem relatively difficult. Many problems with more complicated geometry and loading condition

remain to be solved, and the results are very important to the design of minute structural elements in a wide

variety of nanomechanical systems.

The objective of this paper is to propose a general model for the mechanical analysis of ultra-thin elastic

films of nano-scale thickness with arbitrary geometry and boundary condition. Upon the use of the

transfer-matrix method and an expansion technique, it is shown that the mechanical response of the film is

governed by three two-dimensional partial differential equations of the displacements on the mid-plane.
The associated boundary conditions are described in an average manner in terms of the mid-plane dis-

placements or force resultants, as is the case in practice. Therefore, solving the two-dimensional equations

immediately gives the solution to the film. An intrinsic material parameter having length dimension appears

naturally, implying that the solution is size-dependent. An illustrative example for axi-symmetric bending

of a clamped circular film under the action of a concentrated force is given, and the result exhibits size-

dependence consistent with the case in published literature. It is expected that the procedure can also be

applied to study other problems of thin films, including both deformation and buckling.
2. Basic equations

The system under consideration is a flat elastic film with thickness h and arbitrarily shaped edge. The top

and bottom surfaces of the film are free of external forces, but the edge can be subject to any boundary
conditions. A rectangular coordinate system x1, x2 and x3 is introduced, so that the mid-plane of the film

coincides with the x1 � x2 plane. Throughout this paper, the usual summation convention is applied, where

Latin subscripts run from 1 to 3 while Greek ones take the value of 1 or 2. A comma stands for differ-

entiation with respect to the suffix coordinate.

Both the bulk and surfaces of the film are assumed elastically isotropic. The stress–strain relation of the

bulk material is expressed by
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rij ¼ kuk;kdij þ lðui;j þ uj;iÞ ð1Þ

where rij and ui denote, respectively, stress and displacement, k and l are Lam�ee constants, and dij is the
Kronecker delta which is equal to 1 for i ¼ j and to 0 for i 6¼ j. In the absence of body force, the stress

satisfies the static equilibrium equation
rij;j ¼ 0: ð2Þ

The constitutive relation of the surface proposed by Gurtin and Murdoch (1975) can be expressed as:
sba ¼ s0dba þ ðks þ s0Þum;mdba þ ðls � s0Þðub;a þ ua;bÞ; ð3Þ

in which sab is surface stress, s0 is residual surface tension under unconstrained conditions, and ks and ls are

surface Lam�ee constants. These constants can be obtained by atomistic computation (Miller and Shenoy,

2000) and the change in residue surface tension can be determined from experimental data as shown in He
and Lim (2001). Since the surfaces are flat, force balance of them requires that
ra3 ¼ �sab;b; r33 ¼ 0; at x3 ¼ �h=2: ð4Þ

Accordingly, for getting the solution to the film, one will confront with the field equations (1) and (2), along

with the surface conditions defined by (3) and (4) as well as the edge boundary conditions to be specified.

In order to analyze the mechanical response of the film, the field equations (1) and (2) now are recast into

the following transfer-matrix form:
p;3 ¼ Aq; q;3 ¼ Bp; r ¼ Cp; ð5Þ

in which the 3· 1 columns p � pðxa; x3Þ, q � qðxa; x3Þ, r � rðxa; x3Þ and the 3 · 3 squares A � AðxaÞ,
B � BðxaÞ and C � CðxaÞ are defined by
p ¼
u1
u2
r33

0
B@

1
CA; q ¼

r13

r23

u3

0
B@

1
CA; r ¼

r11

r22

r12

0
B@

1
CA; A ¼

A11 0 A13

0 A11 A23

A13 A23 0

2
64

3
75;

B ¼
B11 B12 B13

B12 B22 B23

B13 B23 B33

2
64

3
75; C ¼

C11 C12 C13

C21 C22 C13

C31 C32 0

2
64

3
75: ð6Þ
The elements of A, B and C are differential operators given by
A11 ¼
1

l
; A13 ¼ �ð Þ;1 ; A23 ¼ �ð Þ;2 ;

B11 ¼ � 4ð1þ KÞl
2þ m

ð Þ;11 �lð Þ;22 ; B12 ¼ � 2þ 3K
2þ K

lð Þ;12 ;

B13 ¼ � K
2þ K

ð Þ;1 ; B22 ¼ �lð Þ;11 �
4ð1þ KÞl
2þ K

ð Þ;22 ;

B23 ¼ � K
2þ K

ð Þ;2 ; B33 ¼ � 1

ð2þ KÞl ;

C11 ¼
4ð1þ KÞl
2þ K

ð Þ;1 ; C12 ¼
2Kl
2þ K

ð Þ;2 ;

C13 ¼
m

2þ K
; C21 ¼

2Kl
2þ K

ð Þ;1 ; C22 ¼
4ð1þ KÞl
2þ K

ð Þ;2 ;

C31 ¼ lð Þ;2 ; C32 ¼ lð Þ;1 ;

ð7Þ
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with K ¼ k=l. Note that the square matrices A and B are symmetric, but C is not. By substitution of Eq.

(3), the surface boundary conditions in Eq. (4) in accordance with the notations defined in (6) are rewritten

as
qa ¼ �ðks þ lsÞpm;ma � ðls � s0Þr2pa; at x3 ¼ �h=2; ð8Þ

where r2 ¼ ð Þ;mm is the two-dimensional Laplacian.
3. Model formulation

The ratio of the thickness h to the in-plane characteristic dimension l of the film defines a small

dimensionless parameter e ¼ h=2l. It is helpful to introduce a scaled thickness coordinate z ¼ x3=e, referring
to it the surfaces of the film are described by z ¼ �l, and the first two equations in (5) are written as
p;z ¼ eAq; q;z ¼ eBp: ð9Þ
The solution of the above equations can be assumed of the form
p ¼
X1
n¼0

enpðnÞ; q ¼
X1
n¼0

enqðnÞ: ð10Þ
Substitution of this into Eqs. (9) and (8) leads to the equations
pð0Þ;z ¼ 0; qð0Þ;z ¼ 0; pðnþ1Þ;z ¼ AqðnÞ; qðnþ1Þ;z ¼ BpðnÞ; ð11Þ
and the associated surface conditions
pðnÞ3 ¼ 0; qðnÞa ¼ �ð1þ KsÞlspðnÞm;ma � ðls � s0Þr2pðnÞa ; at z ¼ �l: ð12Þ
The first two equations in Eq. (11) imply that pð0Þ and qð0Þ are independent of z. Integrating them in

combination with (12) yields
pð0Þ ¼
�uu1
�uu2
0

0
@

1
A; qð0Þ ¼

0

0
�uu3

0
@

1
A; ð13Þ
where �uua and �uu3 are used to denote, respectively, pð0Þa ðxb; 0Þ and qð0Þ3 ðxb; 0Þ, for convenience. At the same time
�uua and �uu3 must satisfy
ks þ 2ls � s0

ls � s0
D;1 þX;2 ¼ 0;

ks þ 2ls � s0

ls � s0
D;2 �X;1 ¼ 0; ð14Þ
with D and X being defined by
D ¼ �uu1;1 þ �uu2;2; X ¼ �uu1;2 � �uu2;1: ð15Þ

In the following it will be seen that �uui are effectively the displacement components of a point on the mid-

plane of the film. Applying pð1Þa ðxb; 0Þ ¼ qð1Þ3 ðxb; 0Þ ¼ 0 and integrating the last two equations in (11) for

n ¼ 0 yield
pð1Þ ¼ �z
�uu3;1
�uu3;2
0

0
@

1
A; qð1Þ ¼ �lgl

ðr2�uu3Þ;1
ðr2�uu3Þ;2

0

0
@

1
A� K

2þ K
z

0

0

D

0
@

1
A; ð16Þ
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where g ¼ ðks þ 2ls � s0Þ=l, and �uua and �uu3 have to fulfill the equations
4ð1þ KÞ
2þ K

D;1 þX;2 ¼ 0;
4ð1þ KÞ
2þ K

D;2 �X;1 ¼ 0: ð17Þ
Note that g only depends on the material properties of the surface and bulk, hence defines an intrinsic

length scale of the film.

The simultaneous satisfaction of both (14) and (17) demands that D;1 ¼ D;2 ¼ X;1 ¼ X;2 ¼ 0, namely
D ¼ constant; X ¼ constant: ð18Þ
This result can be understood by considering a special case when the film undergoes an in-plane defor-

mation. In this situation the in-plane displacement is �uua across the whole thickness of the film, and the

transverse shear stress ra3 vanishes. Equilibrium conditions for the surfaces and the bulk require that (14)

and (17) must hold at the same time, resulting in constant D and X.
By using the results in (18), expressions for pð2Þ and qð2Þ can be obtained by integrating the last two in (11)

for n ¼ 1,
pð2Þ ¼ �glz

ðr2�uu3Þ;1
ðr2�uu3Þ;2

0

0
BB@

1
CCA;

qð2Þ ¼ K
2ð2þ KÞ l

0

0

r2�uu3

0
BB@

1
CCAþ 2ð1þ KÞ

2þ K
lðz2 � l2Þ

ðr2�uu3Þ;1
ðr2�uu3Þ;2

0

0
BB@

1
CCA

ð19Þ
and the following equation for �uu3 is derived as an additional result:
r2r2�uu3 ¼ 0: ð20Þ
In passing these relations, pð2Þa ðxb; 0Þ ¼ qð2Þ3 ðxb; 0Þ ¼ 0 are taken. Similarly, for pð3Þa ðxb; 0Þ ¼ qð3Þ3 ðxb; 0Þ ¼ 0,

continuing the above procedure for n ¼ 0 yields
pð3Þ ¼ 4þ 3K
6ð2þ KÞ z2

�
� 12ð1þ KÞ

4þ 3K
l2
�
z

ðr2�uu3Þ;1
ðr2�uu3Þ;2

0

0
@

1
A; qð3Þ ¼ 0: ð21Þ
It can be readily checked that the subsequent pðnÞ and qðnÞ ðnP 4Þ are all zero if pðnÞa ðxb; 0Þ ¼ qðnÞ3 ðxb; 0Þ ¼ 0

are assumed before hand. Therefore, the expansions of p and q in (10) terminate after the fourth and third

terms, respectively. Then the displacement field of the film is represented, referring to the original thickness

coordinate x3, by
u1

u2

 !
¼

�uu1

�uu2

 !
� x3

�uu3;1

�uu3;2

 !
þ f ðx3Þ

ðr2�uu3Þ;1
ðr2�uu3Þ;2

 !
;

u3 ¼ �uu3 �
K

2þ K
x3Dþ K

2ð2þ KÞ x
2
3r2�uu3;

ð22Þ
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and the stress field in the bulk material reads
r11

r22

� �
¼ 2l

2þ K

2ð1þ KÞ K

K 2ð1þ KÞ

� �
�uu1;1
�uu2;2

 !"
� x3

�uu3;11
�uu3;22

 !
þ f ðx3Þ

ðr2�uu3Þ;11
ðr2�uu3Þ;22

 !#
;

r12 ¼ l �uu1;2
h

þ �uu2;1 � 2x3�uu3;12 þ 2f ðx3Þðr2�uu3Þ;12
i
;

r13

r23

� �
¼ lgðx3Þ

ðr2�uu3Þ;1
ðr2�uu3Þ;2

 !
; r33 ¼ 0:

ð23Þ
Here the functions f ðx3Þ and gðx3Þ are defined by
f ðx3Þ ¼
1

2

4þ 3K
3ð2þ KÞ x23

��
� 3ð1þ KÞ

4þ 3K
h2
�
� gh

�
x3;

gðx3Þ ¼
1

2

1þ K
2þ K

ð4x23
�

� h2Þ � gh
�
:

ð24Þ
Although the results in (22) and (23) are not the most general solution to the equations in (5), they are

the asymptotic solutions within the scope of this paper. Although the approach is asymptotic, the solutions

can be regarded as exact solutions because the expansion terminates after the third or the fourth terms as

detailed above. Eqs. (18) and (20) are mathematically similar to the governing equations in the classical

plate theory (Timoshenko and Woinowsky-Krieger, 1959). The associated boundary conditions at the edge

of the film can be specified in an average manner in terms of mid-plane displacements or rotations, stress

resultants and moments. Indeed, this is consistent with the real case in practice where a point-by-point
prescription of boundary condition across the thickness of a thin film is unrealistic. Once �uui are solved from

(18) and (20), the mechanical field in the film is generated from (22) and (23), and an intrinsic length scale

arises naturally. According to Saint Venant�s principle (Timoshenko and Gere, 1951), the solution is exact

in the interior of the film far from the edge with a distance of order of film thickness.
4. Illustrative example

A practical example of a clamped circular film of radius R is presented to illustrate the exact solution

procedure using the present model. The film is subject to a concentrated force P that is caused by the action

of a tip along the x3-direction as shown in Fig. 1. In this case, it is convenient to introduce a cylindrical

coordinate system r, h and x3 where the origin is located at the center of the film, and r and h is related to x1
and x2 by x1 ¼ r cos h and x2 ¼ r sin h. Due to the symmetry of the problem, one has �uur ¼ �uurðrÞ, �uuh ¼ 0 and
�uu3 ¼ �uu3ðrÞ.
Fig. 1. A clamped circular film subject to a concentrated force P at the center.
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The governing equations for the problem read
1

r
ðr�uurÞ;r ¼ c; r

1

r
ðr�uu3;rÞ;r

� �
;r

� �
;r ¼ 0; ð25Þ
with c being a constant to be determined. The associated boundary conditions are
�uur ¼ 0; �uu3 ¼ 0; �uu3;r ¼ 0; at r ¼ R: ð26Þ
Other conditions include the finite values of �uur and �uu3 at r ¼ 0 and the equilibrium of the force P by stresses

in the film. The latter can be derived as follows. Imagine that a small axisymmetric element with radius r
with respect to the x3-axis is cut from the film. Mechanical equilibrium of the small axisymmetric element
requires that
Z h=2

�h=2
rr3 dx3 ¼ � P

2pr
: ð27Þ
Under these conditions, the solution of (25) can be obtained as
�uu1 ¼ 0; �uu3 ¼ w 1

�
� r

R

� �2
þ 2

r
R

� �2
ln

r
R

�
; ð28Þ
where
w ¼ 3ð2þ KÞR2P
16plh2½ð1þ KÞhþ 6ð2þ KÞg� ; ð29Þ
is the central deflection of the film. The displacement and stress fields of the film then are expressed by
ur ¼
4w
R2r

4þ 3K
3ð2þ KÞ x

2
3

�
� g

�
þ 1þ K
2þ K

h
�
h� r2 ln

r
R

�
x3;

u3 ¼
w
R2

2K
2þ K

�
1þ 2 ln

r
R

�
x23

�
� r2

�
1� 2 ln

r
R

�
þ R2

�
;

rrr ¼ � lw
R2r2

4þ 3K
3ð2þ KÞ x

2
3

�
� g

�
þ 1þ K
2þ K

h
�
hþ 1þ K

2þ K
r2 2

�
þ 2þ 3K

1þ K
ln

r
R

��
x3;

rr3 ¼
4lw
R2r

4ð1þ KÞ
2þ K

x23

�
� g

�
þ 1þ K
2þ K

h
�
h
�
:

ð30Þ
Note that the concentrated force gives rise to singular stresses at r ¼ 0.
Apparently, the above solution contains the intrinsic length g and, hence, is size-dependent. It is clear

that the size-dependent nature of the mechanical response of the film originates from strain-dependence of

surface stress, as is described in Eq. (3). Indeed, if the surface stress is assumed constant, corresponding to

the limit case of g ! 0, the results in (30) will be scaling-invariant. In particular, the central deflection of the

film, now denoted by w0, becomes
w0 ¼ 3ð2þ KÞR2P
16plð1þ KÞh3 : ð31Þ
This is exactly the same as the prediction of classical elasticity without surface effect. To illustrate the size-

dependence quantitatively, the difference between w and w0 will be examined. Miller and Shenoy (2000)

have computed free-surface properties for aluminum and silicon, and indicated different values depending

upon crystallographic orientation. The intrinsic length they defined (the modulus ratio of surface to bulk)
can be either positive or negative, but the absolute value is nearly 1 �AA. According to their data, it can be

calculated that the relevant parameters in the present model are basically of the same orders. Fig. 2 shows
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the relative errors between w and w0, ðw� w0Þ=w, for various values of film thickness, where K ¼ 1:5 and

g ¼ 1 or )1 �AA are taken. It can be seen that, positive value of g makes the film stiffer while negative value of

g makes the film more compliant. Because g depends on the surface Lam�ee constants ks and ls and the

residual surface tension under unconstrained conditions s0 as defined in Eq. (16), it implies larger values of
ks and ls increase the stiffness of the film while excessive s0 reduces its stiffness. For both cases the relative

error of the central deflection increases with the decrease of the film thickness, and the size-dependence

becomes significant when the film thickness falls down to about 20 nm. The results are in reasonable

consistency with the other predictions by lattice model (Sun and Zhang, 2003) or continuum method

(Gurtin and Murdoch, 1975; Shenoy, 2002; Sharma and Ganti, 2002; Sharma et al., 2003).

Due to the effect of surfaces, the distributions of displacements and stresses within the film also depend

on the thickness. For elucidation, the following dimensionless quantities are introduced
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u�r ¼
phl
P

ur; u�3 ¼
phl
P

u3; r�
rr ¼

ph2

P
rrr; r�

r3 ¼
ph2

P
rr3: ð32Þ
When the surface effects are excluded, i.e. g ! 0, it can be known from (30) that the relationships between

these quantities and x3=h are scaling-invariant or size-independent. However, this is no longer the case for

ultra-thin films of nano-scale thickness where the surface effects cannot be ignored. Evident numerical

results for the distributions of the displacements and stresses at r ¼ R=2 are given in the following, where

R=h ¼ 5 is taken and the cases for h ¼ 5 nm and 15 nm are compared.

Plotted in Figs. 3 and 4 are through-the-thickness distributions of in-plane and out-of-plane displace-

ments, u�r and u�3. Since positive g increases the effective stiffness while negative g decreases it, the magni-

tudes of the dimensionless displacements for g ¼ �1 �AA are greater than those for g ¼ 1 �AA. When the film
thickness is decreased, the absolute values of the dimensionless displacements decrease for positive g while
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increases for negative g. In both cases the variations of the displacements are nearly linear across the
thickness. In the classical theory for elastic plates without surface effects, a linearly varying in-plane dis-

placement and a constant out-of-plane displacement are assumed. The corresponding transverse shear

stresses then vanish. Nevertheless, for films with surface effects, these simplifications will lead to incon-

sistency of stresses with respect to the boundary conditions on the surface.

The distributions of the dimensionless in-plane and transverse shear stress, r�
rr and r�

r3, through the

thickness of the bulk material at r ¼ R=2 are shown in Figs. 5 and 6, respectively. Again, the magnitudes of

these stresses are greater for g ¼ �1 �AA than for g ¼ 1 �AA at the same position. The effects of variation in film

thickness on r�
rr and r�

r3 are also similar to the effects on displacements. Note that the maximum transverse
shear stress is greater than the maximum in-plane stress in magnitude, because for the problem under

consideration the external load is mainly balanced by the resultant shear force in the film. The transverse

shear stresses in the regions very close to the surfaces, though quite small, do not vanish. They can be

positive or negative, depending on the sign of g.
5. Conclusions

A continuum model based on surface elasticity is proposed to analyze the size-dependent mechanical

response of ultra-thin elastic films of nano-scale thickness. Being expressed in terms of displacements of the

mid-plane, the governing equations are two-dimensional and the associated boundary conditions are

specified at the edge of the film in an average manner as in the classical plate theory. Once the two-
dimensional equations are solved, the three-dimensional mechanical field that is exact in Saint Venant�s
sense is generated directly. The asymptotic analysis developed for solving the two-dimensional equations

can be regarded to yield exact solutions because the expansion terminates after a few terms. The solution

procedure is illustrated by analyzing a clamped circular film under a concentrated force. The result is

consistent with the other existing studies and it approaches the classical plate solution without surface stress

effects. It is concluded that the size-dependence is due to the dependence of surface stress on strain. Ignoring

this strain-dependence of surface stress will lead to the disappearance of size effect. The presence of surface

Lam�ee constants and residual surface tension under unconstrained conditions increases and decreases the
film stiffness, respectively.
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